1)
$-5+3x=7x+1$
$3x-7x = 5+1$
$-4x = 6$
$\dfrac{1}{-4} \times (-4x) = 6 \times \dfrac{1}{-4}$
$x = -\dfrac{6}{4} = \boldsymbol{\textcolor{red}{-\dfrac{3}{2}}}$
$\boldsymbol{S = \{\textcolor{red}{-\dfrac{3}{2}}\}}$
2)
$\dfrac{x}{4}-\dfrac{7x}{2}=\dfrac{8x}{32}-2$
$\dfrac{x}{4}-\dfrac{14x}{4}=\dfrac{x}{4}-2$
$4 \times (\dfrac{x-14x}{4}) = (\dfrac{x-8}{4}) \times 4$
$x-14x = x-8$
$-14x = -8$
$\dfrac{1}{-14} \times (-14x) = -8 \times \dfrac{1}{-14}$
$x = \dfrac{8}{14} = \boldsymbol{\textcolor{red}{\dfrac{4}{7}}}$
$\boldsymbol{S = \{\textcolor{red}{\dfrac{4}{7}}\}}$
3)
$-\dfrac{2}{5}(-4x-5)=\dfrac{x}{2}+2$
$\dfrac{8}{5}x + 2 = \dfrac{x}{2} + 2$
$\dfrac{16}{10}x + \dfrac{20}{10} = \dfrac{5x}{10} + \dfrac{20}{10}$
$10 \times (\dfrac{16x+20}{10}) = (\dfrac{5x+20}{10}) \times 10$
$16x+20 = 5x+20$
$16x-5x = 0$
$11x = 0$
$\dfrac{1}{11} \times 11x = 0 \times \dfrac{1}{11}$
$\boldsymbol{\textcolor{red}{x=0}}$
$\boldsymbol{S = \{\textcolor{red}{0}\}}$
4)
$1+x\sqrt{5}=2x-\sqrt{2}$
$-2x+x\sqrt{5} = -1-\sqrt{2}$
$x(-2+\sqrt{5}) = -1-\sqrt{2}$
$\dfrac{1}{-2+\sqrt{5}} \times x(-2+\sqrt{5}) = (-1-\sqrt{2}) \times \dfrac{1}{-2+\sqrt{5}}$
$x = \dfrac{-1-\sqrt{2}}{-2+\sqrt{5}} = \boldsymbol{\textcolor{red}{\dfrac{1+\sqrt{2}}{2-\sqrt{5}}}}$
$\boldsymbol{S = \{\textcolor{red}{\dfrac{1+\sqrt{2}}{2-\sqrt{5}}}\}}$